Iixperience Report: Using Formal Mecthods for
Reqgiirements Analysis of Critical Spacecraft

Softwarc
Robyn 1}. TLautz? Yoko Ampo !
Jet I’r opulsion Laboratory NEC Corporation
California,Institutc of I'echnology Tokyo, Japan

IPasadena, CA 91109

Scptember J 3, 1994

Tormal specification and analysis of requirements continues to gain support asa method
for producing more rcliable software. However, the introduction of forma]l methodsto a large
software project is difficult, clue in part to the unfamiliarity of the specification languages
andthe lack of graphics, This paperreports results of aninvestigation into the cffectivencss
of formal methods asanaid to the requirements analysis of critical, system-level {fault-
protection softwarc on a spacecraft currently under development. Our experience indicates
that formal specification and analysis can cnhance the accuracy of therequirements and add
assurance prior to design development in this domain.

The work described here is part of alarger, NA SA-funded research project whosc purpose
is to usc forma]-methods techniques to improve the quality of software in space applications
[2]. The demonstration project described here is part of the effort to evaluate experimen-
tally the cffectiveness of supplementing traditional enginecering approaches to requirements
specification with the more rigorous specification and analysis available with formal methods.

The approach taken in this investigation was to:

1. Sclect the application domain. Theprimary criteria were, first, to select portions of the
requirements Of a-r large, embedded software proj ect currently under development, and,
secondly, to select safcty-critical software, meaning that its failure could jeopardize the
spacecraft systcmor mission *. Thesclected applications were therequirements for
portions of the Cassinispacccraft’s system-level fault-protection software.

* First author’s mailing address i;l)cpt. of Computer Science, lowa State University, Ames,1A 50011.
Theresearch described in this paper was carried out by the Jet I'repulsion Laboratory, Caifornia Institute

of "Technology, under a contract with NASA.
1Sccond author’s mailing address is Space Station Systems Division, NIC Corporation, 4035 lkebe-cho,

Midori-ku, Yokohama 226, Japan. This work was performed while the author was a visiting researcher at

Jet I'repulsion laboratory, Pasadena, CA 91109.
'Our use of the term “safety-critical “ is consistent with the NASA Software Safety Standard [5], but

diflers slightly from the spacecraft project’s definition.

Sk JM’Hc’(l L Ae /féé Ahhua/é 57(‘17"'""’\6]‘ {z‘fm:e’ V""J NI Ay/j

9. Model the sclected applications using object-oriented diagrams. The Object-,j.,t.]
modecli ng tool used in this work was Paradigm Plus; AN implementation of OMT, the
Object Modcling Technique [6] 2 This effort built on earlier work in this research
project in which OM'T diagrams were found to be a useful complement to formal
specificationin areverse-cngincering application [1]. Our work differs inthat we applicd
OM'T to software currently in the process of being developed, with {formal proofs as
well as formal specifications being created.

3. 1Llevelop forma] specifications, T'he formal specification language used in this study
was that of PVS, the Prototypc Verification Systemn [8]. PVS is an integrated environ -
ment for developing and analyzing formal specifications inducting support, tools and a
theorein pl-over.

4. 1 ‘rove required properties. Wc determined properties that must hold for the target
software to be Ilazarcl-free and function correctly, specified them in PVS as lemmas
(claims), and proved or disproved them using the interactive theorem-prover.

[

Feedback results to the Project. Because we were analyzing requirements that were
still being updated, part of our task was to keep current with the changes and to
provide timely feedback to the Project as they resolved the remaining requirements
issues and began design development.

The experiment described here produced 25 pages of PVS specifications and 15 pages of
OMT diagrams. 37 lemmas were specified. Of these, 21 were provento be true and 3 were
disproven. Ariadditional 13 lemmas were stated but not proven. Five of these unproven
leminas were obviously true fromn the formal specifications; foul’ Were out of the Scope of
our application; ant] four remain to be proven. ‘J’helemin as that were proved were claims
or challenges which must be true if the specifications arc accurate aind the requirements are
llazard-free.

Thelemmas were divided into three calegorics: requiremenits- met, safetl y, and liveness
properties. Requirements-met lemmas traced the documented requirements to the formal
specifications. For example, a documented requirement “If a response can be initiated by
miore than one monitor, each monitor shallinclude an enable/clisablc mechanisin” Icc] to
a lemma demonstrating that the specifications satisfied thisrequirement. We proved or
disproved | Osuch requirements-met lemimas.

Safety properties were “shall-not” claims, which canbe stated informally as“nothing
bad ever happens [9].” kxamples are, “The software shall not activate any responsc that
is not requested by amonitor” and“ Theresponse shall not change the instrument’s status
during a critical scquence of commands.” Wc were able to prove 7 such safety propertics,
adding assurance that the software did not introduce hazardsinto the system.

Liveness propertics described the positive aspects of the correct behavior of the software:
“something good eventually happens [9] .“ Examples are, ‘‘If a response has the highest
priority among the candidates and dots not finish in the current cycle, it will be active in
the next cycle” and “If the response occurs duringa non-critical scquence of commands,

?Paradigm Plus is a registered trademark of Protosoft, inc.

then theinstrument is turned on. » W prod 7suchliveness properties, adding assurance
that no hidden assumptions were required for the software to function correctly.

The results obtained from the specification and analysis (including proofs) of the require-
ments were of two types: issues found in the requirements and an cvaluation of the process
itself.

A total of 37 issues were found in the requirements. These were categorized as follows:

« Undocumented assumptions: 11. The formalization of the requirementsrevealed sev-
cral assumptions that were not cxplicit in the documentation. An example of such an
assuinptionis, “if the spacecraft is in a critical attitude, then the software is executing
a ‘critical scquence of commands.” Frequently, these assumptions involved interface
issues between software modules or subsystems, historically a frequent source of errors
that persist until systeimn testing [4]. In almost every case, the hidden assumption was
currently correct, However, several assumptions merited documentation, especially
since future changes caninvalidate current assumptions.

« Inadequate requirements for off-nominal or boundary cases: 10. These issues usually
involved unlikely scenarios in which a pre-condition could be false. We often had to
consult spacecraft engincers to know whether such boundary cases were credible. For
example, the case in which several monitors withthe same priority level detect faults
inthe same cycle was not described. By concretely specifying the possibility of ofl-
nominal scenarios, the forma] analysis can contribute added robustness to the system.

« Tracecability and inconsistency: 9. These issues included lack of traceability between
the high-level requirements and low-level requirements, as wc]] as inconsistency between
the software requirements and the design of subsystems.Many of these issues were
significant in that they could aflect both the logic and the correctness of the formal
specifications. An example is that although the high-level requirements assume that
multiple detections of faults occuring within the response time of the first fault detected
arc symptoms of the original fault, the lower-lcwc] requirements (correctly) cancel a
lower-priorily fault response to handle a higher-priority response.

¢ Imprecise terminology: 6. These were documentation issues, frequently involving syn-
onyms or related terms. The definition of types in I'VS enforced their resolution.

e l.ogical error: 1. The logical error involved the handling of arequest for service from a
monitorin the case that a higher-priority request occurred. The question as to whether
such a request could face st arvation was first raised during the initial close rcading.
The formalization of the issue as a lemma. which could be disproven provided insight
and certainty.

The evaluation of the process wc uscd to specify and analyze the requirements led us to
three conclusions:

1. Using object-oriented models. Yor the target applications, object-oriented modeling
oflered several advantages as an initial step in developing formal specifications. 1Wirst,
the object-oriented modeling defined the boundaries andinterfaces of the embedded

sofl warc applications al the level of abstraction chosen as appropriate by the specifiers.
in addition, the modecling offered a quick way to gainmultiple perspectives on the
requirements. F'inally, the graphical diagrams served as a frame upon which to base
the subsequent formal specification and guided the steps of its development. Since
the clements of the diagrammatic mode] often mappedin a straightforward way to
clements of the formal specifications, this reduced the effort involved in producing an
initial formal specification. Wc also found that the object-oricntcx] models did not
always represent the “wily,” of the requirements, i.e, the underlying intent or strategy
of thesoftware. in contrast, the formal specification often clearly revealed the intent
of the requirements.

2. Using formal mcthods for requirements analysis. Unlike earlier work inthis research

project on software in which the requirements were very mature and stable and the
formal specification entailed reverse engineering (Space Shuttle’'s Jet Sclect Subsystem),
the work on Cassini’s faul {-protection subsystem anal yzed requirements at a much
earlier phasc of development. Conscquently, the requirements that we analyzed were
known to bein flux, with several key issues still being worked (c.g., liming details,
number of priority levels). A negative eflcct of the lack of stability was that time was
spent staying current with changes. A positive cffect was that issues identified during

our analysis could be readily fed back into the development process before the design
was fixed.

We were concerned as to whether it was a waste of time to formally specify requirements
while they were still likely to change. Certainly, there was inefliciency in rewriting
specifications to conform to changes that occurred duringtheexperiment. However,
based onour experience withthis trial project, theformal specification of unstable

requirements had the following advantages:

« Laidt hefoun dation for future work.

« Allowed rapid review of proposed changes and alternatives.

« Clarified requirements issues still being worked by clevating undocumented con-
cerns to clear, objective dileminas.

« Complemented the lower-level FMEA (Failure Modes and Effects Analysis) al-
rcady being perfomed on the software, by providing higher-level verification of
system properties,

Added confidence inthe adequacy of the requirements that had been analyzed
using forma] mecthods.

Rushby’s recent study of formal mecthods for airborne systems rcached the similar but
cvenstronger conclusion] that forma] methods can be most effectively applied early in
thelifecycle [7].

3. Using formal methods for safely-critical soflware. Yor a safety analysis it is important

to ensure that a hazardous situation does not occur, as well as that the correct behavior
clocs occur. Fault Tree Analysis, which backtracks froma hazardto its possible causes,
is onc method used for this kind of hazards analysis [3]. However, unlike forma methods

of specification and proof, Fault Tree Analysis is an inforinal inethod which in practice
permits ambiguous or inadequate descriptions.

Formalinethods helped us find hazardous scenarios by forcing us to show every con-
ditionand prompting us to define new, undocumented assumptions. The process o f
developing formal specifications and proofs triggered us to think about the full range
of cascs, some of which were unanticipated,

In conclusion, one of the goals of the larger research projcct within which this inves-
tigation was perforined isto evaluate the effectiveness and practicalilty of formal methods
for enhancing the devclopment processand the reliability of the end product. Our main
contributions {o this work in the Cassini demonstration project have been:

« Applying formal methods to the software rcquirements analysis of a project currently
under development,

. Using object-oricntcc] diagrams to guide the formal specification of software require-
ments,

« Formally specifying and proving a set of properties essential for the correct and hazard-
frcc behavior of the software, and

 1)cmonstrating that formal methods canbeused to specify and analyze an application
involving safcty-critical software.

Acknowledgments

Other contributors to the formal methods work at Jet Propulsion Llaboratory are Rick Cov-
ington, John Kelly, ant] Allen Nikora. Ken Abernethy contributed to this work while visiting
J 1'1,. The authors also thank Sarah Gavit and Jan Berkeley for helpful discussions.

The work described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, and was sponsored by the National Aeronautics and
Space Adimninistration.

Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitue or imply its endorsement by
the United States Government or the Jet Propulsion laboratory, Californialnstitute of
Technology.

References

[1] B. H. C. Cheng and B. Auernheimer, “Applying Yormal Methods and Object-Oriented
Analysis to Existing Flight Software,” Proc 18th A nnual Software Fng Workshop 1993,
NASA/Goddard Space ¥Flight Center, S¥1,, Dec 1993, 274-282.

[2] 1o ormal Methods Demonstration Project for Space Applications, P’hase 1 Case Study: Space
Shuttle Orbit 1).4}Y Jet Select, JP1,3S5C,and |, ARC, December 1993.

[3]

[4]

[5]
(€]

[9]

N. G. Lieveson , “Software Safety in Embedded Computer Systems,” Commun A CM, 34, 2,
}eb 1991, 35-46.

R. Lutz, “Analyzing Software Requirements Frrors in Safety-~rii,ic.al, Kmbedded Systems,”
Proc IEEE Internat Symp on Requirements Fng. 11511, Computer Society Press, 1993, 1'26-
133.

NASA Software Safety Standard, NSS 1740.13, Interim,June, 1994.

J. Rumbaugh, M. Blaha, W. Premerlani, II'. Iiddy, ant] W. Lorensen, Qbject- Oriented Model-
ing and Design. Prentice Hall, 1991.

J. Rushby, “Formal Methods and Digital Systems Validation for Airborne Systems,” SRI-
CS51.-93-07, Nov 1993.

N, Shankar, S. Owre,and J, M. Rushby, The PVS Specification and Verification System, SR1,
March, 1993.

J. M. Wing. “A Specifier's Introduction to Formal Mcthods,” IEEL Computer, 23, 9, Sept
1990, 8- 24

